Skip to main content

Course Search

Course Search

Course Search

Precision Engineering – BEng

  • CAO Points: 213

  • Campus: Moylish, Limerick City

  • years: 3


Course Overview

Precision engineering is involved with the design, manufacturing and measurement of highly specified parts for the medical, aerospace, automotive, oil and gas exploration and related industry. This degree has been designed with industry to respond efficiently and effectively to the needs of the Precision Engineering industry.

Students learn how to work effectively with both manual and CNC machines to produce parts from an initial design to a final product. Parts are designed using CAD systems to develop solutions to engineering problems and when completed the accuracy will measure specialised measurement equipment such as co-ordinate measuring machines (CMM). Students will work as individuals and in groups on a variety of industrial standard engineering projects.

This degree is an active learning programme with the application of theory in workshop/ labs with hands-on experience on state-ofthe-art CNC machines, CAM software and metrology equipment. Students will use some of the newest CNC technology such as Fanuc Robodrill (3 axis milling machine) Spinner 5-axis milling machine, Mazak twin spindle lathe with milling capability.

Contact Details

Ciarán O’Loughlin

Email: Ciaran.OLoughlin@tus.ie

What are the entry requirements?

Leaving Certificate

A minimum of 5 O6/H7 grades in Leaving Certificate subjects, including Mathematics and English/Irish.

Mature Applicants

Candidates applying as mature applicants may be required to attend an interview and may be requested to take an aptitude test to prove their suitability for a place on this programme.

Level 6 Craft Certificate (Trade) such as Fitting or Toolmaking, or National/Higher Certificate

Candidates who hold a Senior Trade Certificate and/or National Craft Certificate or holders of a National/Higher Certificate (Level 6) in Engineering or Technology may be considered for admission to Year 2 of this programme subject to a satisfactory interview.

International Applicants

International applicants should apply directly to the International Office at TUS, allowing plenty of time for completing the visa process. Applications for September start should be made by 1st June at the latest to ensure visas are processed in time. You should familiarise yourself with visa processing times for your country of origin to ensure you make a timely application. Find out more here.

Course Modules

  • Engineering Computing

    Credits: 5

    This module introduces the learner to ‘Microsoft Office 2016’ computing applications including MS Word, MS Excel, MS Powerpoint, MS Access and MS Project. Learners will start with basic applications and then progress through to an advanced level. The learner will develop a knowledge of how to apply the software to useful engineering applications such as formal report writing (laboratory), charting engineering data, producing equations and creating a technical database.

    Students will be assessed on their learning by a variety of strategies including Continuous Assessment, Project and Course Work, Examinations and Moodle based assignments. Continuous assessment is worth 40%, Christmas exam is worth 20% and the final exam is worth 40%.

  • Engineering Technology

    Credits: 15

    The aim of this module is to develop an understanding and a working knowledge of the engineering technology and materials used in industry.

  • Introduction to CNC Programming and Operation

    Credits: 10

    This module will introduce the learner to Computer Numerically Controlled (CNC) technology and machining processes and operations. The emphasis of this modules is mainly focused on CNC programming, setting, and operation. The learner will be required to create part programmes using ISO G and M codes and conversational programming techniques on CNC milling machines and CNC Lathes. Tool setup, work setting and safe operation of the machines is fundamental to the production of components and the learners will be actively using CNC machines to realise their programmes.

    The principles of part programming are introduced and its relationship to precision machining processes is confirmed through practical coursework. The learner will engage in problem-solving skills by determining machining strategies through the selection of appropriate ISO limits and fits for specified machined components and implementing best practice to produce these components. The appropriate measurement methods and instruments which can be used for linear and angular measurements and geometrical parameters including surface finish, squareness, parallelism, roundness etc.

    All elements of the module are predicated upon safety and ethical considerations. This module is structured to provide a balance of theoretical and practical experience through classroom, metrology laboratory and workshop environments, which combined will greatly enhance the problem solving skills of the learner.

  • Introduction to Mechanical Engineering Maths

    Credits: 10

    Develop a recognition of the basics of engineering mathematics and use them to solve practical engineering problems.

  • Mechanical CAD and Design

    Credits: 10

    Engineering Drawing is an essential communication technique for those involved in Engineering, the aim of this module is to give the student a comprehensive introduction to the standards used in the preparation of Engineering drawings. Computer Aided Design (CAD) systems are now the typical means by which Engineering drawings are produced, students will use 2D and 3D CAD software to prepare a portfolio of their work.

  • Mechanical Engineering Science

    Credits: 10

    To develop an understanding of the basic laws of physics and their application to engineering.

  • CAD & Design

    Credits: 5

    The use of computer aided design (CAD) systems in industry has become an essential part of the modern working environment. It is used at all stages of the design period, from conceptualisation and production of working drawings to the production of virtual reality images, prototypes, and final products. This unit aims to further candidates understanding of the CAD Parametric Modelling environment, in terms of hardware, software and physical surroundings, and the concepts of mechanical engineering design that accompany this environment. It will explore the typical composition of a CAD Parametric Modelling systems and Health and Safety matters that are associated with safe working practices.

  • CNC Programming (CAM), Setting and Operation

    Credits: 10

    The aim of this module is to advance the CNC knowledge and skills of the learner who already has an introductory knowledge of manually programing CNC machines. Through the introduction of Computer Aided Manufacturing (CAM) software, the learner will develop a greater depth knowledge in current CNC tooling technology and quality standards, analyse tooling usage, speeds, feeds, operation sequencing and machining strategies for greater machining efficiency. The learner will use industrial standard CAM software to program for manufacture, as well as set-up, and operate CNC mills and lathes to manufacture components typical to that produced in the precision engineering industry.

  • Engineering Technology and Maintenance

    Credits: 15

    This module in Engineering Technology and Maintenance introduces the learner to advanced technologies, procedures and techniques as used by the modern mechanical or manufacturing engineer. The module has four main elements including metrology, material science, manufacturing processes and maintenance. All four elements are predicated upon safety and ethical considerations as required by a code of good practice.

    The workshop content forms a very important element of this module and the material given in the lecture is positively reinforced in the workshop setting. Learners will utilise practical workshop activities to create parts, assemblies and projects to industry standards. The use of metrology laboratory work create the opportunity of the student to self-assess the quality of their work. This learning is supported through the linking of lectures to this coursework, assessments and development of problem based learning and experiential learning.

  • Industrial Machine Mechanics – Statics and Dynamics

    Credits: 10

    The aim of this module is to develop a knowledge of the fundamental principles of machine mechanics and dynamics of industrial machinery, to the learner who already has an introduction to engineering science. Knowledge gained from this module will provide the learner with the analytical capability to solve practical and relevant industrial mechanical engineering problems.

    As part of this module the learner will apply the principles of mechanics to construct and solve mathematical models which describe the effects of force and motion on a variety of structures and machines that are of concern to engineers in the manufacturing industry. The methodical approach to machine mechanics will develop the learner’s ability to carry out coursework through logical thinking and effective communication and represent work in a clear, logical and concise manner; all of these skills are important to engineers in the precision industry.

  • Mech Eng Maths & Programming

    Credits: 10

    Strengthen the knowledge of mathematical fundamentals with the aim of solving more complex practical Engineering problems. Developing programming, debugging and engineering computation skills using software such as Visual Basic in Excel.

  • Six Sigma and Metrology

    Credits: 10

    This module is an introduction to the principles of six sigma and metrology standards to the learner with no prior engineering experience. The principles of geometric tolerancing, gauge repeatability and reproducibility are introduced and its relationship to precision machining processes is confirmed through practical coursework. The learner will use appropriate measurement methods and instruments for linear and angular measurements and geometrical parameters including surface finish, squareness, parallelism, roundness etc.

  • Advanced CNC Machining 1

    Credits: 5

    The aim of this module is to advance the CNC knowledge and skills of the learner who already has an introductory knowledge of CNC machining. The learner will develop a greater depth knowledge in current CNC tooling technology and quality standards, analyse tooling usage, speeds, feeds, operation sequencing and machining strategies for greater machining efficiency. The learner will program, set-up, and operate CNC mills and lathes.

  • Advanced CNC Machining 2

    Credits: 5

    The aim of this module is to advance the CNC knowledge and skills of the learner who already has completed Advanced CNC machining 1. The learner will use industrial standard computer-aided-manufacturing (CAM) software for complex components. These complex components will required the learner to investigate advanced techniques to machine parts with complex 3D surfaces, use simultaneous 5-axis motion and to use advanced milling techniques on turned components.

    The learner will develop a greater depth knowledge in current CNC tooling technology and quality standards, analyse tooling usage, speeds, feeds, operation sequencing and machining strategies for greater machining efficiency. The learner will program, set-up, and operate CNC mills and lathes. The learner’s knowledge of ISO programming will be developed for more advanced CNC machining techniques, development of macros, advanced canned cycles, multiple-part environment and multiple-component machining.

  • Advanced Engineering Technology

    Credits: 5

    This module in advanced engineering technology presents in great detail both the traditional and modern manufacturing processes to the learner. Advanced and emerging technologies used in modern precision engineering industries are analysed and reviewed by the learner who already has an introductory knowledge of engineering technologies and manufacturing processes. Modern machine tooling, work and tool holding techniques are also presented.

  • Advanced Six Sigma and Metrology 1

    Credits: 5

    This module introduces the learner to adcanced six sigma tools appropriate for the precision machining industry and other regulated manufacturing environments such as medical device, aerospace and automotive. The statistical aspect of the module uses techniques for analysing multiple production systems with the aims of identifying critcal underlying factors and how they interact with other variable in the system. This will enable the learner to develp process optimisation plans using design of experiments. On completion of this work the learner will also have gained the knoledge to employ methods for maintaining improvements so that they can be sustained ober a prolonged period of time.

  • Advanced Six Sigma and Metrology 2

    Credits: 5

    This module introduces the learner to statistical techniques for performing advanced process optimsation. The aim of this modules is to broaden the learners statistical knowledge in process improvement methodologies applicable to the precision machining industry but also in other industries in particular pharmaceutical manufacturing. The design of experiments section of the module details tools which are frequently used in tese industries to control the implementation of process changes and improvements.

  • Applied Mechanical Engineering Mathematics 1

    Credits: 5

    The aim of this module is to provide a detailed and in-depth understanding of engineering mathematical concepts, which will allow the learner to be able to apply this knowledge to solve practical and relevant mechanical engineering problems.

  • Applied Mechanical Engineering Mathematics 2

    Credits: 5

    The aim of this module is to provide a detailed and in-depth understanding of engineering mathematical concepts, which will allow the learner to be able to apply this knowledge to solve practical and relevant mechanical engineering problems.

  • Group Project

    Credits: 5

    This module involves active learning where learners participate in a work based group project. The group project topic may have industrial links and involves the practical application of research, design, engineering principles, materials analysis and manufacturing. The group project allows for team development where each member has a defined role to play.

    This module also incorporates professional development, which aims to advance the learner’s transferrable skills, in order to prepare for employment. Transferrable skills such as project management and organisation, creative problem solving, technical writing and presentation skills are developed in this module.

  • Individual Project

    Credits: 5

    This module aims to develop the learner’s ability to apply their technical skills and knowledge to complete an individual technical project. There may be capacity for the individual project to focus on a pre-existing group project, where the focus of the project may be in such areas as characterisation and test of an assembly, product improvements, risk assessment or any other relevant topic agreed between learner and supervisor.

    This module also incorporates professional development, which aims to advance the learner’s transferrable skills, in order to prepare for employment. Transferrable skills such as project management and organisation, creative problem solving, technical writing and presentation skills are developed in this module.

  • Material Selection

    Credits: 5

    This subject aims to improve the learners knowledge and understanding of materials used by engineers. Learners will apply relevant mechanical equations to practical problems, components and case studies. Learning is enhanced with the use of a material selection software package, (CES Edupack for example). Learners will also analyse mechanical components that are exposed to complex loading. This module will enhance their learning from the Fluids & Mechanics module in Yr 2 and coincide with the Applied Mathematics module in Yr 3. This module is semesterised. Mechanics and Failure Analysis will follow on from it in Semester 2.

  • Mechanics & Failure Analysis

    Credits: 5

    This module aims to improve the learners knowledge and understanding of materials used by engineers. Learners will apply relevant mechanical equations to practical problems, components and case studies. Learning is enhanced with the use of a material selection software package, (CES Edupack for example). Learners will also analyse mechanical components that are exposed to complex loading. This module will enhance their learning from the Fluids & Mechanics module in Yr 2 and coincide with the Applied Mathematics module in Yr 3. This module is semesterised and follows on from the Material Selection module in semester 1.

  • Process Planning

    Credits: 5

    This module aims to improve the learner’s knowledge and understanding of process planning in a precision engineering environment.

    The learner will develop a knowledge of modern manufacturing processes through the completion of coursework in a practical workshop environment and will critically analyse the strategic usage of the manufacturing processes for specific components to increase the manufacturing efficiency, productivity and profitability of modern precision engineering industries. The module will also discuss the integration of manufacturing techniques to the learner with focus on the precision engineering industry. The role, implementation and monitoring of process planning in a modern precision engineering industry is analysed.

What can you do after this programme?

Graduates will find work as a Precision engineer using CAD/CAM to design and develop complex components using CNC machines.

Positions that graduates have worked in include:

  • Precision/Production/Manufacturing Engineer
  • Design engineer and development of complex parts
  • Additive Manufacturing (3D printing)
  • Metrology and Inspection
  • Process Management and control
  • Lean Engineer

Successful graduates may continue onto a L8 course such as B.Eng. (Hons) in Mechanical Engineering (A8285), or other suitable engineering courses.